
Theory and Frontiers of
Computer Science

Fall 2013
Carola Wenk

We have seen so far…
Computer Architecture and Digital Logic (Von Neumann
Architecture, binary numbers, circuits)

Introduction to Python (if, loops, functions)

Algorithm Analysis (Min, Searching, Sorting; Runtimes)

Linked Structures (Lists, Trees, Huffman Coding)

Graphs (Adjacency Lists, BFS, Connected Components)

Data Mining (Finding patterns, supervised learning)

The Big Picture

So far, we have been designing algorithms for problems
that meet given specifications.

Input Program Output

There are many programs that can implement a particular
algorithm, but we can make our picture even more
abstract.

The Big Picture

We can think even more abstractly: for any particular
problem we can come up with many algorithms.

Input Algorithm Output

A natural way to categorize algorithms is by the problems
they solve.

The Big Picture

We can think even more abstractly: for any particular
problem we can come up with many algorithms.

Input Output

A natural way to categorize algorithms is by the problems
they solve.

...

Problem

The Big Picture

We can think even more abstractly: for any particular
problem we can come up with many algorithms.

Input Output

A natural way to categorize algorithms is by the problems
they solve.

...

Problem

The Big Picture

Then, for a particular problem , we are interested in
finding an “efficient” algorithm.

Is this always possible? What does “efficient” mean?

Output
...

Problem

Input

(Worst-Case) Asymptotic Runtime
Analysis
Usually, the abstract performance of an algorithm
depends on the actual input for any particular size n.

Which inputs should we use to characterize runtime?

Time

Input Size

“No matter what, my algorithm
takes at most cn steps for an
input size of n.”

We define algorithm performance
as conservatively as possible, on
the worst-case inputs.

Computational Complexity
The field of “computational complexity” tries to categorize the difficulty of
computational problems. It is a purely theoretical area of study, but has
wide-ranging effects on the design and implementation of algorithms.

Alan Turing

A Turing Machine captures the essential components of computation:
memory and state information.

The Church-Turing Thesis states that “everything algorithmically
computable is computable by a Turing machine.”

Computational Complexity

Turing-Computable Problems

Efficiently Solvable

The field of “computational complexity” tries to categorize the difficulty of
computational problems. It is a purely theoretical area of study, but has
wide-ranging effects on the design and implementation of algorithms.

Intractable

Computational Complexity
The field of “computational complexity” tries to categorize the difficulty of
computational problems. It is a purely theoretical area of study, but has
wide-ranging effects on the design and implementation of algorithms.

Turing-Computable Problems

Efficiently SolvableIntractable

? ?

Computational Complexity
The field of “computational complexity” tries to categorize the difficulty of
computational problems. It is a purely theoretical area of study, but has
wide-ranging effects on the design and implementation of algorithms.

Turing-Computable Problems

Polynomial-Time:Super-Polynomial:

? ?

Polynomial Versus Exponential Time

We adopt the convention that as long as an algorithm’s running time is
polynomial (or logarithmic) in the input, it is “efficient”. Why is this a good
criterion?

Polynomial Versus Exponential Time

Selection
Sort

Merge Sort

Binary
Search

Minimum,
Maximum, Linear

Search

We adopt the convention that as long as an algorithm’s running time is
polynomial (or logarithmic) in the input, it is “efficient”. Why is this a good
criterion?

Example: Fibonacci numbers
F(0)=0; F(1)=1; F(n)=F(n-1)+F(n-2) for n 2

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

Implement this recursion directly:
F(n)

F(n-1) F(n-2)

F(n-2) F(n-3) F(n-3) F(n-4)

F(n-3) F(n-4) F(n-4) F(n-5) F(n-4) F(n-5) F(n-5) F(n-6)

n n/2

Runtime is exponential: 2n/2 ≤ T(n) ≤ 2n

Polynomial Versus Exponential Time

Selection
Sort

Merge Sort

Binary
Search

Minimum,
Maximum, Linear

Search

We adopt the convention that as long as an algorithm’s running time is
polynomial (or logarithmic) in the input, it is “efficient”. Why is this a good
criterion?

O(2n)
Recursive
Fibonacci

Polynomial versus Exponential Time

Suppose we have two algorithms and for the
same problem, where:

Which algorithm is better according to our usual
method of comparison? For all large n?

Polynomial versus Exponential Time

Suppose we have two algorithms and for the
same problem, where:

≤
?
≥

Which algorithm is better according to our usual
method of comparison? For all large n?

Polynomial versus Exponential Time

Suppose we have two algorithms and for the
same problem, where:

?≤?
≥
≤
?
≥

Which algorithm is better according to our usual
method of comparison? For all large n?

Polynomial versus Exponential Time

Suppose we have two algorithms and for the
same problem, where:

?≤?
≥
≤
?
≥

Which algorithm is better according to our usual
method of comparison? For all large n?

Polynomial versus Exponential Time

Suppose we have two algorithms and for the
same problem, where:

?≤?
≥
≤
?
≥

Which algorithm is better according to our usual
method of comparison? For all large n?

Polynomial versus Exponential Time

Suppose we have two algorithms and for the
same problem, where:

?≤?
≥

≤
For all large n,
e.g., for all n ≥ 1011

Which algorithm is better according to our usual
method of comparison? For all large n?

Actually, every polynomial is (eventually) upper
bounded by any exponential.

Lemma: For any , and any , we have
that , for sufficiently large .

Polynomial versus Exponential Time

Suppose we have two algorithms and for the
same problem, where:

Computational Complexity
The field of “computational complexity” tries to categorize the difficulty of
computational problems. It is a purely theoretical area of study, but has
wide-ranging effects on the design and implementation of algorithms.

Turing-Computable Problems

Polynomial-Time:Super-Polynomial:

? ?

Computational Complexity
The field of “computational complexity” tries to categorize the difficulty of
computational problems. It is a purely theoretical area of study, but has
wide-ranging effects on the design and implementation of algorithms.

Turing-Computable Problems

Polynomial-Time:Super-Polynomial:

? ?

The Halting Problem

Upper and Lower Bounds
If we can come up with an algorithm that correctly solves a particular
problem , then its worst-case running time is an upper bound.

What would be more useful though, is evidence that cannot
be solved in a given amount of time. In other words, to establish difficulty
we need a lower bound on the running time of any algorithm for .

Upper Bound

Algorithm A for

can be solved in TA(n) time

Lower Bound

Regardless of the algorithm, the
problem cannot be solved in

less than T*(n) time.

Upper and Lower Bounds
If we can come up with an algorithm that correctly solves a particular
problem , then its worst-case running time is an upper bound.

What would be more useful though, is evidence that cannot
be solved in a given amount of time. In other words, to establish difficulty
we need a lower bound on the running time of any algorithm for .

Upper Bound

MergeSort for sorting a list

Sorting can be done in
O(n log n) time

Lower Bound

Every sorting algorithm requires
at least ??? time.

Upper and Lower Bounds
If we can come up with an algorithm that correctly solves a particular
problem , then its worst-case running time is an upper bound.

What would be more useful though, is evidence that cannot
be solved in a given amount of time. In other words, to establish difficulty
we need a lower bound on the running time of any algorithm for .

Upper Bound

MergeSort for sorting a list

Sorting can be done in
O(n log n) time

Lower Bound

Every sorting algorithm requires
at least cn time.

Can we match the lower bound
to the upper bound?

Lower Bound for Sorting

How many possible orderings?

How many possible outputs?

We came up with an algorithm for sorting that took
time, can we be sure that this is the fastest possible?

Given a list of distinct elements, consider what any algorithm for
sorting actually does:

Unsorted List

Sorted List

Lower Bound for Sorting

Unsorted List

Sorted List

How many possible orderings?

How many possible outputs?

We came up with an algorithm for sorting that took
time, can we be sure that this is the fastest possible?

Given a list of distinct elements, consider what any algorithm for
sorting actually does:

Lower Bound for Sorting
Unsorted List

Sorted List

How many possible orderings?

How many possible outputs?

Any correct sorting algorithm must be able to permute any input
into a uniquely sorted list. Therefore any sorting algorithm must
be able to “apply” any of the possible permutations necessary
to produce the right answer.

Lower Bound for Sorting
Any sorting algorithm must be able to “apply” any of the
possible permutations necessary to produce the right answer.

We can visualize the behavior of any sorting algorithm as a
sequence of decisions based on comparing pairs of items:

Yes No

Yes No

Yes No

NoYes

.

.

.

Algorithm :

Lower Bound for Sorting
For a list with items, let the possible permutations be

. Any sorting algorithm must be able to “reach” all
of these permutations by making a sequence of comparisons.
The corresponding decision tree is:

... ...

What does any of this tell us
about the running time?

This decision tree is a
binary tree, and its height is
a lower bound on the
running time of .

What is the minimum height
of any binary decision tree?

Algorithm :

Lower Bound for Sorting
For a list with items, let the possible permutations be

. Any sorting algorithm must be able to “reach” all
of these permutations by making a sequence of comparisons.
The corresponding decision tree is:

... ...

n! ≤ # leaves ≤ 2height

So, n! ≤ 2height

This is equivalent to:
log n! ≤ height

Algorithm :

Lower Bound for Sorting
For a list with items, let the possible permutations be

. Any sorting algorithm must be able to “reach” all
of these permutations by making a sequence of comparisons.
The corresponding decision tree is:

... ...

n! ≤ # leaves ≤ 2height

So, n! ≤ 2height

This is equivalent to:
log n! ≤ height

Algorithm :

n! = n (n-1) (n-2) … 1
= n …(n/2+1) n/2 (n/2-1) … 1

≥ n/2… n/2 n/2 1 … 1

≥ (n/2) n/2

So, n! ≥ (n/2) n/2

Lower Bound for Sorting
For a list with items, let the possible permutations be

. Any sorting algorithm must be able to “reach” all
of these permutations by making a sequence of comparisons.
The corresponding decision tree is:

... ...

n! ≤ # leaves ≤ 2height

So, n! ≤ 2height

This is equivalent to:
log n! ≤ height

So:
log (n/2)n/2 ≤ log n! ≤ height

Algorithm :

So, n! ≥ (n/2) n/2

Lower Bound for Sorting
For a list with items, let the possible permutations be

. Any sorting algorithm must be able to “reach” all
of these permutations by making a sequence of comparisons.
The corresponding decision tree is:

... ...

So:
log (n/2)n/2 ≤ log n! ≤ height

Therefore:
(n/2) log (n/2) ≤ height

Or equivalently:
(1/2) n log n - (n/2) ≤ height

Algorithm :

(n/2) log (n/2) =

What does this tell us about
Merge Sort?

The Power of Lower Bounds

“I can’t find an efficient algorithm, I guess I’m just
dumb.”

Exponential-time Algorithm, Trivial lower bound

[Garey and Johnson ’79]

The Power of Lower Bounds

“I can’t find an efficient algorithm, because no such algorithm is
possible.”

Matching Exponential-time bounds

[Garey and Johnson ’79]

