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We have seen so far…
Computer Architecture and Digital Logic (Von Neumann 
Architecture, binary numbers, circuits)

Introduction to Python (if, loops, functions)

Algorithm Analysis (Min, Searching, Sorting; Runtimes)

Linked Structures (Lists, Trees, Huffman Coding)

Graphs (Adjacency Lists, BFS, Connected Components)

Data Mining (Finding patterns, supervised learning)



The Big Picture

So far, we have been designing algorithms for problems 
that meet given specifications.

Input Program Output

There are many programs that can implement a particular 
algorithm, but we can make our picture even more 
abstract.



The Big Picture

We can think even more abstractly: for any particular 
problem we can come up with many algorithms.

Input Algorithm Output

A natural way to categorize algorithms is by the problems 
they solve.
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The Big Picture

Then, for a particular problem     , we are interested in 
finding an “efficient” algorithm. 

Is this always possible? What does “efficient” mean?

Output
...

Problem

Input



(Worst-Case) Asymptotic Runtime 
Analysis
Usually, the abstract performance of an algorithm 
depends on the actual input for any particular size n.

Which inputs should we use to characterize runtime?

Time

Input Size

“No matter what, my algorithm
takes at most cn steps for an 
input size of n.”

We define algorithm performance 
as conservatively as possible, on
the worst-case inputs.



Computational Complexity
The field of “computational complexity” tries to categorize the difficulty of 
computational problems. It is a purely theoretical area of study, but has 
wide-ranging effects on the design and implementation of algorithms.

Alan Turing

A Turing Machine captures the essential components of computation:
memory and state information.

The Church-Turing Thesis states that “everything algorithmically
computable is computable by a Turing machine.”



Computational Complexity

Turing-Computable Problems

Efficiently Solvable

The field of “computational complexity” tries to categorize the difficulty of 
computational problems. It is a purely theoretical area of study, but has 
wide-ranging effects on the design and implementation of algorithms.

Intractable



Computational Complexity
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wide-ranging effects on the design and implementation of algorithms.
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Efficiently SolvableIntractable

? ?



Computational Complexity
The field of “computational complexity” tries to categorize the difficulty of 
computational problems. It is a purely theoretical area of study, but has 
wide-ranging effects on the design and implementation of algorithms.

Turing-Computable Problems

Polynomial-Time:Super-Polynomial:

? ?



Polynomial Versus Exponential Time

We adopt the convention that as long as an algorithm’s running time is 
polynomial (or logarithmic) in the input, it is “efficient”. Why is this a good 
criterion?



Polynomial Versus Exponential Time

Selection
Sort

Merge Sort

Binary 
Search

Minimum, 
Maximum, Linear 

Search

We adopt the convention that as long as an algorithm’s running time is 
polynomial (or logarithmic) in the input, it is “efficient”. Why is this a good 
criterion?



Example: Fibonacci numbers
F(0)=0; F(1)=1; F(n)=F(n-1)+F(n-2) for n  2

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

Implement this recursion directly:
F(n)

F(n-1) F(n-2)

F(n-2) F(n-3) F(n-3) F(n-4)

F(n-3) F(n-4) F(n-4) F(n-5) F(n-4) F(n-5) F(n-5) F(n-6)

n n/2

Runtime is exponential: 2n/2 ≤ T(n) ≤ 2n



Polynomial Versus Exponential Time

Selection
Sort

Merge Sort

Binary 
Search

Minimum, 
Maximum, Linear 

Search

We adopt the convention that as long as an algorithm’s running time is 
polynomial (or logarithmic) in the input, it is “efficient”. Why is this a good 
criterion?

O(2n)
Recursive 
Fibonacci



Polynomial versus Exponential Time

Suppose we have two algorithms     and     for the 
same problem, where:

Which algorithm is better according to our usual 
method of comparison? For all large n?
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Polynomial versus Exponential Time

Suppose we have two algorithms     and     for the 
same problem, where:

?≤?
≥

≤
For all large n,
e.g., for all n ≥ 1011

Which algorithm is better according to our usual 
method of comparison? For all large n?



Actually, every polynomial is (eventually) upper 
bounded by any exponential. 

Lemma: For any                    , and any          , we have 
that                , for sufficiently large    .   

Polynomial versus Exponential Time

Suppose we have two algorithms     and     for the 
same problem, where:
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computational problems. It is a purely theoretical area of study, but has 
wide-ranging effects on the design and implementation of algorithms.

Turing-Computable Problems

Polynomial-Time:Super-Polynomial:

? ?



Computational Complexity
The field of “computational complexity” tries to categorize the difficulty of 
computational problems. It is a purely theoretical area of study, but has 
wide-ranging effects on the design and implementation of algorithms.

Turing-Computable Problems

Polynomial-Time:Super-Polynomial:

? ?

The Halting Problem



Upper and Lower Bounds
If we can come up with an algorithm that correctly solves a particular 
problem , then its worst-case running time is an upper bound.

What would be more useful though, is evidence that cannot
be solved in a given amount of time. In other words, to establish difficulty 
we need a lower bound on the running time of any algorithm for .

Upper Bound

Algorithm A for 

can be solved in TA(n) time 

Lower Bound

Regardless of the algorithm, the 
problem      cannot be solved in 

less than T*(n) time. 
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Upper and Lower Bounds
If we can come up with an algorithm that correctly solves a particular 
problem , then its worst-case running time is an upper bound.

What would be more useful though, is evidence that cannot
be solved in a given amount of time. In other words, to establish difficulty 
we need a lower bound on the running time of any algorithm for .

Upper Bound

MergeSort for sorting a list

Sorting can be done in
O(n log n) time 

Lower Bound

Every sorting algorithm requires 
at least cn time. 

Can we match the lower bound 
to the upper bound?



Lower Bound for Sorting

How many possible orderings?

How many possible outputs?

We came up with an algorithm for sorting that took  
time, can we be sure that this is the fastest possible?

Given a list of distinct elements, consider what any algorithm for 
sorting actually does:

Unsorted List    

Sorted List    



Lower Bound for Sorting

Unsorted List    

Sorted List    

How many possible orderings?

How many possible outputs?

We came up with an algorithm for sorting that took  
time, can we be sure that this is the fastest possible?

Given a list of distinct elements, consider what any algorithm for 
sorting actually does:



Lower Bound for Sorting
Unsorted List    

Sorted List    

How many possible orderings?

How many possible outputs?

Any correct sorting algorithm must be able to permute any input 
into a uniquely sorted list. Therefore any sorting algorithm must 
be able to “apply” any of the       possible permutations necessary 
to produce the right answer.



Lower Bound for Sorting
Any sorting algorithm must be able to “apply” any of the       
possible permutations necessary to produce the right answer.

We can visualize the behavior of any sorting algorithm as a 
sequence of decisions based on comparing pairs of items:

Yes No

Yes No

Yes No

NoYes

.

.

.

Algorithm     :



Lower Bound for Sorting
For a list     with     items, let the possible permutations be

.  Any sorting algorithm must be able to “reach” all 
of these permutations by making a sequence of comparisons. 
The corresponding decision tree is:

... ...

What does any of this tell us 
about the running time?

This decision tree is a 
binary tree, and its height is 
a lower bound on the 
running time of     .

What is the minimum height 
of any binary decision tree?

Algorithm     :
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For a list     with     items, let the possible permutations be

.  Any sorting algorithm must be able to “reach” all 
of these permutations by making a sequence of comparisons. 
The corresponding decision tree is:

... ...

n! ≤ # leaves ≤ 2height

So, n! ≤ 2height

This is equivalent to:
log n! ≤ height

Algorithm     :
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n! = n (n-1) (n-2)  …  1
= n …(n/2+1) n/2 (n/2-1)  …  1
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≥ (n/2) n/2

So, n! ≥ (n/2) n/2



Lower Bound for Sorting
For a list     with     items, let the possible permutations be

.  Any sorting algorithm must be able to “reach” all 
of these permutations by making a sequence of comparisons. 
The corresponding decision tree is:

... ...

n! ≤ # leaves ≤ 2height

So, n! ≤ 2height

This is equivalent to:
log n! ≤ height

So:
log (n/2)n/2 ≤ log n! ≤ height

Algorithm     :

So, n! ≥ (n/2) n/2



Lower Bound for Sorting
For a list     with     items, let the possible permutations be

.  Any sorting algorithm must be able to “reach” all 
of these permutations by making a sequence of comparisons. 
The corresponding decision tree is:

... ...

So:
log (n/2)n/2 ≤ log n! ≤ height

Therefore:
(n/2) log (n/2) ≤ height

Or equivalently:
(1/2) n log n - (n/2) ≤ height

Algorithm     :

(n/2) log (n/2) =

What does this tell us about 
Merge Sort?



The Power of Lower Bounds

“I can’t find an efficient algorithm, I guess I’m just 
dumb.”

Exponential-time Algorithm, Trivial lower bound

[Garey and Johnson ’79]



The Power of Lower Bounds

“I can’t find an efficient algorithm, because no such algorithm is 
possible.”

Matching Exponential-time bounds

[Garey and Johnson ’79]


